Multi-class boosting with adversarial multi-arm bandits on incomplete views Andrea Simeon (Mihajlović)

> Sanja Brdar, Miloš Radovanović, Tatjana Lončar-Turukalo, Michelangelo Ceci and Gianvito Pio

STSM Short-term scientific mission

COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.

https://www.cost.eu https://www.ml4microbiome.eu

Funded by the European Union

TOPIC OUTLINE

MOTIVATION

CONCLUSION

MOTIVATION

MCROBIONE

- Sequence data analysis
- Choose:

a. Sequencing technique: amplicon vs shotgun

b. Preprocessing technique: different pipelines

- Associate with diseases and conditions (ML classification)
- Dan et al. (2020) doi: 10.1080/19490976.2020.1747329
- Multi-view learning (fusion)
- Peng et al. (2018) doi: 10.1109/TNNLS.2016.2637881

PROBLEM STATEMENT

PROBLEM 1: MULTIPLE INCOMPLETE VIEWS

- Multiple measurements on the same data
- Incomplete in terms of samples across views

PROBLEM 2: MULTI-CLASS

• More than two classes

data s views

EXAMPLE

Complete views

	$f_{1,1}$	$f_{1,2}$	$f_{1,3}$
s_1	5	10	2
s_2	1	1	2
s_3	7	4	1
s_4	5	4	3

	$f_{2,1}$	$f_{2,2}$	$f_{2,3}$
s_1	10	7	2
s_2	1	2	2
s_3	3	4	7
s_4	5	4	6

	$f_{1,1}$	$f_{1,2}$
s_1	5	10
s_2	1	1
s_4	5	4

Incomplete views

	$f_{2,1}$	$f_{2,2}$	$f_{2,3}$
s_1	10	7	2
s_3	3	4	7

Peng et al. (2018) doi: 10.1109/TNNLS.2016.2637881

sample weight

prediction

Adversarial MAB

- Multiarmed bandits (MAB)
- Player vs k slot machines
- Maximize total reward
- Adversaries
- EXP3.P
- Very good in finding expected

Peng et al. (2018) doi: 10.1109/TNNLS.2016.2637881

sample weight

prediction

irBoost.SH

- Extension to rBoost.SH
- Incomplete views
- Multi-class setting
- Edge and prediction changes

	$f_{2,1}$	$f_{2,2}$	$f_{2,3}$
s_1	10	7	2
s_2	1	2	2
s_3	3	4	7
s_4	5	4	6

Incomplete views

	$f_{1,1}$	$f_{1,2}$	$f_{1,3}$
s_1	5	10	2
s_2	1	1	2
s_4	5	4	3

	$f_{2,1}$	$f_{2,2}$	$f_{2,3}$
s_1	10	7	2
s_3	3	4	7

rBoost.SH

 $h_t(x_i)$ classifier's prediction

time t $y_i, h_t(x_i) \in \{1, -1\}$ samples

edge
$$\theta_i$$

$$\theta_t = 2 \sum_{i \in \mathcal{N}} w_{t,i} y_i h_t(x_i)$$

edge weight $\alpha_t = \frac{1}{2} \ln \frac{1 + \theta_{t,j^*}}{1 - \theta_{t,i^*}}$ chosen view i^*

reward

$$r_t = 1 - \sqrt{1 - \theta_t^2}$$

irBoost.SH

$y_i, h_t(x_i) \in \mathbb{N}$

edge

$\theta_t = 2\sum_{i=2}^{\infty} w_i \left(\mathbb{I}[y_i = h_t(x_i)] - \frac{1}{2} \right)$

rBoost.SH

weight update

$$w_{t+1,i} = \frac{w_{t,i}}{Z_t} \times e^{-\alpha_t y_i h_t(x_i)}$$

normalization factor

prediction

$$H(\mathbf{x}) = sign\left(\sum_{t} \alpha_{t} h_{t,*}(x_{i,*})\right)$$

irBoost.SH

weight update $w_{t+1,i} = \frac{w_{t,i}}{Z_t} \times e^{-2\alpha_t \left(\mathbb{I}[y_i = h_t(x_i)] - \frac{1}{2} \right)}$

prediction

$$H(\mathbf{x}) = \arg\max_{c} \frac{1}{Z} \left(\sum_{t} \alpha_{t} \widehat{\boldsymbol{h}}_{t}(x_{i,*}) \right)$$

RESULTS

DATA

ASD

- 2 incomplete views
- amplicon and shotgun data
- 2 classes (ASD vs noASD)

ASD-16S

- 40 views from 16s sequences
- varying clustering similarity and filtration method

- 44 views from 16s sequences
- same pipeline like ASD-16s
- 3 classes (C, A, H)
- •Normal •Adenoma •Small adenoma •Large adenoma •Cancer

251		
228		

DATA PRE-PROCESSING

- Using QIIME 2
- SILVA taxonomy database
- Different similarity measures
- Filtering strategies:
 - filtering features by minimum frequency
 - filtering features by
 minimum samples in
 which feature must be
 represented
 - no filtering

ASD EXPERIMENTS ASD-1 ASD-2

ONLY 16S SAMPLES

- Single view
- Baseline multi-view
- irBoostSH

ONLY SHOTGUN SAMPLES

- Single view
- Baseline multi-view
- irBoostSH

ASD-3

INTERSECTION SAMPLES

- Baseline multi-view
- irBoostSH

RESULTS

ASD-16S Single-view ir

Predicted label

Single-view

irBoost.SH

VIEW STATISTICS

CONCLUSION

- Diversity necessary
- Extended:
 - multi-class case
 - view-based missing samples
- Learning rate?
- How much heterogeneous?
- Regression?
- Weight initialization? • Semi-supervised?

• Efficient multi-view framework

THANK YOU FOR LISTENING!

Q & A

